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1 Introduction

The ocean and the atmosphere form a coupled dynamic and thermodynamic system, principally forced
by the incident solar radiation. Heat �uxes create large scale motions in the atmosphere and temper-
ature gradients. Such atmospheric gradients create horizontal density variations in the ocean, which
lead to pressure gradients and velocity �eld (i.e oceanic currents).

The ocean-atmosphere system is highly non-linear (Navier-Stokes equations and thermodynam-
ics). The scales interact with each other and the spectrum of motions is continuous. One usually
distinguishes four typical scales:
The planetary scale (L ≥ 250 km) with large currents forced by the wind (e.g. the Gulf Stream, the
Kuroshio). At this scale the motions are dominated by the rotation and the strati�cation, and the
dynamics can be described by the geostrophic balance1. The �uid moves principally horizontally. The
input of energy by the wind in the whole ocean through such currents is estimated to be 1 TW [23].
The meso-scale (50 km ≤ L ≤ 250 km) describes the vortices and the jets created by intensi�cation or
by instability of large scale currents. The submeso-scale (250 m ≤ L ≤ 50 km) contains �laments and
small vortices coming from the breaking or the interactions of larger scales (e.g. through instabili-
ties). At this scale the rotation of earth becomes negligible. Finally, the �ne scale contains essentially
isotropic -3D- motions (up to the dissipation scales), because the strati�cation has no more impact on
the dynamics.

Because of the strati�cation and the rotation, waves in the oceans can occur in the interior of the
�uid. Such waves are called internal waves. Three types of internal wave occur in the ocean:

• Near-inertial waves which are primarily forced by the atmosphere (i.e the winds) with a frequency
close to one day. This kind of waves represents about half the kinetic energy in the internal wave
spectrum.

• Internal tides generated by the barotropic tide �owing over topographic features and are generated
at the frequency of the tides. About 1.2 TW of energy is converted in such waves in the global
deep ocean [15].

• Lee waves generated by currents (mostly geostrophic ones) �owing over rough topography. If the
mean current is stationary, such waves are stationary, with a null frequency observed in a �xed
frame of reference. It has been estimated that 0.2 TW is converted from geostrophic currents to
internal lee waves [13]. This put forth the proposition that about 20% of the wind input in the
ocean forces the generation of lee waves.

Generation of lee waves can be very strong when the near-bottom current is intense and the
topography very rough. The understanding of these waves is a major issue in physical oceanography
since they provide a mechanism for the transfer of energy from large-scale �ows to turbulent length
scales [5]. A lot of study focuses on lee waves occuring in the Drake Passage (e.g. [4], [14]) because
the intense Antarctic Circumpolar Current (ACC) �ows above large topographic features. For some
years now, another region has been recognized being an important area for lee wave generation: the
Gulf Stream region.

1Equilibrium between the rotation of earth and the horizontal pressure gradients
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Figure 1: Observations in the Gulf Stream region. (left) Surface roughness from sun glitter satellite
observation. (right) Sea surface temperature from CROCO simulation, the black curved area highlights
the domain of the simulation discussed later. Gray contours indicate the bathymetry levels from 0 m
to 800 m every 100 m.

In the North Atlantic, an anticyclonic gyre is forced by the wind at the scale of the basin. The
western intensi�cation2 generates a northward and powerful current at the western boundary: the Gulf
Stream. This current starts at the Strait of Florida and �ows northward along the U.S. continental
shelf before leaving the coast at Cape Hatteras. The sea surface temperature in the region of the
Gulf Stream is shown in Fig. 1(right panel). An important along-shelf temperature gradient is visible,
which is associated with the northward current through geostrophic balance. This current is very
intense, �owing up to 2 m s−1 in some regions. Near 31.5◦N, 79◦W, a prominent topographic feature is
present o� the coasts of South Carolina and Georgia: it is called the Charleston Bump. This feature is
remarkable because it is located in the path of the Gulf Stream, and it creates an area of very shallow
(O(500) m) and intense (O(1) m s−1) �ow. It has been shown that the Charleston Bump has a big
in�uence on the shape of the Gulf Stream and that it exerts an important drag upon it [8].

Along the path of the Gulf Stream, by looking at sun glitter images, one can see the the signa-
ture of internal waves (Fig.1(left panel)) and particularly above the Charleston Bump. These signa-

2Phenomenon linked to the rotation of the earth which leads to the intensi�cation of the currents at the western
boundaries of the basins.
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tures in sattelite observations appear to be linked to bathymetric features and has been identi�ed as
lee waves surface signature [24]. Other studies using seagliders3 have identi�ed typical patterns of
topographically-generated lee waves in this speci�c region [20]. Such observations of lee waves in the
Gulf Stream have already been made a long time ago by observing the patchiness of seabird distribu-
tion at the surface [9].
The study of lee waves raise some important questions: (1) Under which conditions do the lee waves
can be generated in the oceanic context ? (2) What are their properties (wavelength, frequency, en-
ergy �ux...) ? (3) Can observed waves properties be understood using simple (e.g. linear) theoretical
models ? (4) Are such waves able to generate some dissipation in the ocean, and what is their impact
on the energetic budget in the ocean ?

The work I have done during this internship aims at characterizing the generation of lee waves
in the wake of topographic seamounts along the Gulf Stream path using theoretical analysis and
numerical simulations. This report presents the di�erent tools and diagnostics implemented to study
this phenomenon. The �rst section discusses theoretical aspects of the lee wave phenomenon. The
second section presents the realistic simulation used to study the Gulf Stream region. Diagnostics and
characterization of lee waves within the simulation are then discussed in the third section. Finally, the
fourth section focuses on non-linear aspects of the lee wave phenomenon.

3Quasi-Lagrangian platforms carrying temperature and salinity sensors.
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2 Theoretical prediction of lee waves

This sections aims at presenting theoretically the lee wave phenomena. Starting from the main equa-
tions underlying physical oceanography, a short discussion is �rstly made about internal waves. Sec-
ondly, a focus on the speci�c case of internal lee waves is made.

2.1 General considerations

For the study of oceanic �uid dynamics, two main parameters have to be considered: strati�cation
(described by the vertical distribution of the density ρ) and rotation. The ocean can be described by
incompressible Navier-Stokes equation in a rotating frame, and an equation of state ρ = ρ(T,S,P),
with T the temperature, S the salinity ans P the pressure. This problem being extremely complex,
it can be simpli�ed by considering some approximations [22] (details of the calculations are presented
in appendix A). Far from the equator and assuming the Boussinesq approximation, the ocean can be
described by a set of equation called primitive equations:

d

dt
u+ fez × u = − 1

ρ0
∇P− ρ′

ρ0
g.ez + F+D (1)

where u = (u, v,w) is the velocity of the �uid, d
dt = ∂t + u∂x + v∂y + w∂z the material derivative,

g = 9.81 m.s−2 the gravity,f = 2Ωsinφ the Coriolis parameters (φ is the latitude), ez the normal vector
of the local frame and F+D any term for forcing and dissipation (for instance wind forcing and
Laplacian di�usion).

The density is decomposed into a constant component ρ0, a mean strati�cation which varies along
the z-axis (i.e the vertical axis) ρ̄(z) and a anomaly which drives the dynamic in the �uid ρ′, such that:

ρ = ρ0 + ρ̄(z) + ρ′(t, x, y, z). (2)

The equation describing the evolution of density is:

− g

ρ0

d

dt
ρ′ + wN2 = 0. (3)

N is the Brunt-Väisälä frequency de�ned by

N2 = − g

ρ0
∂zρ. (4)

This quantity controls the static stability of the �uid. On the one hand N2 > 0 implies that the
density decreases with z (the �uid at the surface of the ocean is lighter than the one bellow). Thus,
if a perturbation is introduced in the system the �uid particles will oscillate around an equilibrium
position. On the other hand, if N2 < 0 the position of the �uid particles will diverge, and convection
will occur.

2.2 General dispersion relationship of linear internal waves

By linearizing equations (1) and (3) around a rest state, and by considering incompressibility, one
obtains the following system in a case without forcing and dissipation:
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

∂tu− fv = − 1

ρ0
∂xP (a)

∂tv + fu = − 1

ρ0
∂yP (b)

∂tw +
ρ′

ρ0
g = − 1

ρ0
∂zP (c)

− g

ρ0
∂tρ
′ + wN2 = 0 (d)

∂xu + ∂yv + ∂zw = 0 (e)

(5)

After some algebra, an equation for w, the vertical velocity within the �uid is obtained[1]:

∂tt(∆w) + f2∂zzw + N2∆hw = 0. (6)

where ∆ and ∆h are respectively the Laplacian and the horizontal Laplacian operators. Assuming
there exists a monochromatic wave solution of equation (6) such that w = w0e

i(kx+my+nz−ωt), where ω
is the frequency of the wave, and k = (k,m,n) its wavevector, one can derive the dispersion relationship
of internal waves in a rotating and strati�ed �uid:

n2 =
(
k2 + m2

)(N2 − ω2

ω2 − f2

)
. (7)

2.3 Hydrostatic condition

In some cases, it can be interesting to consider the hydrostatic approximation in order to simplify the
equations. To do so, the term ρ′

ρ0
g has to be much greater than ∂tw in equation (5)(c). Combining

equations (5)(c) and (5)(d) and giving a time scale T ∼ ω−1, a criterion for the validity of hydrostatic
hypothesis is obtained:

ω

N
� 1→ Hydrostatic (8)

2.4 The case of lee waves

Figure 2: Lee wave situation: a �uid with strati�cation N �ows with a horizontal velocity U over a
topography of shape h(x, y) which typical horizontal scale is L.
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When the mean current encounters a bottom topography, a vertical displacement of �uid particles is
forced. Because of the strati�cation, this forcing induces the propagation of waves within the �uid.
That kind of wave is called lee waves. This part presents some elements required to understand the
theory of such waves.

Consider a steady background �ow U = (U, 0, 0) along the x-axis and a strati�cation N over a
topography h(x, y) of typical length L as presented in Fig. 2. In the presence of the mean �ow, a
Doppler-shifted frequency ωa = ω + k.U would be measured by a stationary observer. Therefore, in
the frame of the current the frequency is imposed by the current such that ω = −kU. If it's periodic,
the topography also imposes the along-�ow horizontal wavenumber k ∼ 1/L (as we will see in the
following). Considering the dispersion relation (7), internal waves can only propagate if n ∈ R. For
the case of lee waves, it results in the propagation condition:

|f|/|U| < k < |N|/|U|. (9)

In the case studied in this report, one can assume a typical strati�cation N ∼ 10−2 s−1, a barotropic
(i.e homogeneous with respect to vertical) �ow U ∼ 1 m/s, a typical size of seamounts L ∼ 1 km and
a coriolis parameter f ∼ 10−4 s−1. Therefore, in �rst approximation and to keep the calculations
tractable, the contribution of rotation in (7) is neglected.

Finally the two dispersion relations for hydrostatic and non hydrostatic lee waves are:
n2(k,m) = k−2

(
k2 + m2

)(N2

U2
− k2

)
for non-hydrostatic lee waves (a)

n2(k,m) = k−2
(
k2 + m2

)N2

U2
for hydrostatic lee waves (b)

(10)

In the following of this section we will keep both hydrostatic and non-hydrostatic dispersion relations
to be complete, knowing that in the second part of this report we will only consider the hydrostatic
solution.

2.5 Lee waves solutions

Knowing the wave form of the internal waves and neglecting rotation, equation (6) can be re-written
as:

∂xx
(
∆w
)

+
N2

U2

(
∆hw

)
= 0. (11)

Assuming a radiation condition at the top of the domain, and the condition that the �ow follows the
topography at the bottom, such that:{

w 6= 0 at the top (a)

w = U(z = 0) ∂xh(x, y) at the bottom (b)
(12)

and de�ning the vertical displacement of a streamline η such that w = U∂xη, the bottom boundary
condition becomes:

η(x, y, z = 0) = h(x, y), (13)

which means that the bottom of the domain is equal to a streamline.
The solution of the problem de�ned by (11) and (13) may be obtained by using a 2D Fourier

transform over the (x, y) plane. The 2D Fourier transform is de�ned by:

η̃(k,m, z) =

∫ +∞

−∞

∫ +∞

−∞
η(x, y, z)ei(kx+my) dxdy. (14)
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In Fourier space, the problem becomes:{
∂zzη̃(k,m, z) + n2η̃(k,m, z) = 0

η̃(k,m, z = 0) = h̃(k,m)
(15)

where h̃(k,m) is the Fourier transform of the topography of general shape h(x, y). Finally, the solution
of the problem is obtained by calculating the inverse Fourier transform :

η(x, y, z) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
η̃(k,m, z)ei(kx+my) dk dm (16)

2.5.1 Constant N and U

Assuming a constant strati�cation N and a constant velocity along the x-axis U, the solution of the
problem (15) with an upper radiation condition is

η̃(k,m, z) = h̃(k,m)ei n(k,m)z, (17)

and thus

η(x, y, z) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
h̃(k,m)ei(kx+my+n(k,m)z)dkdm (18)

where n(k,m) is determined with relations (10) (taking the positive square root of n2 which implies a
positive group velocity).
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Figure 3: Lee wave hydrostatic solution computed numerically from equation (18) with U = 1 ms−1 and
N = 1.102 s−1. (a) Vertical velocity from calculation in the (x, z) plane (side view), solid lines are the
streamlines η. The bold line represents the shape of the bathymetry h(x) used in the calculation. (b)
Vertical velocity from calculation at (x, y) = (10, 0) km, double arrow indicates the vertical theoretical
wavelength for 2D hydrostatic �ow (U/N).

The most common example of solution is the 2D, sinusoidal topography such as

h(x) = h0 cos(kTx), (19)
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where kT is the wavenumber of the topography. The Fourrier transform of h(x) is simply h̃(k) = δ(kT − k).
Therefore, the integral (18) collapses to a simply horizontal perodic solution with a wavenumber kT.
In the presence of a periodic topography, an internal wave is generated, which wavenumber is imposed
by the topography such as :

η(x, z) = h0 cos(kT x + n z) (20)

where n is equal to N/U in the 2D hydrostatic case .
The numerical computation of equation (18) for a shape of topography de�ned with (19) is pre-

sented in Fig. 3. The horizontal wavelength of the �eld corresponds to the wavelength imposed by the
topography. Furthermore, the vertical wavelength is found equal to U/N as predicted by the theory.

2.5.2 Varying N and U

We assume that the strati�cation and the x-axis velocity are varying with depth as N(z) and U(z).
Firstly the dispersion relation (10) has to be modi�ed by taking into account the shear of the �ow [1]:

n2(k,m, z) = k−2
(
k2 + m2

)(N(z)2

U(z)2
+

Uzz(z)

U(z)
− k2

)
for non hydrostatic lee waves (a)

n2(k,m, z)2 = k−2
(
k2 + m2

)(N(z)2

U(z)2
+

Uzz(z)

U(z)

)
for hydrostatic lee waves (b)

(21)

Because n2 varies with depth, the solution of (15) is not as simple as (17). One way to compute the
solution is to use the WKBJ approximation [6] (see appendix B). The solution of (15) becomes

η̃(k,m, z) = h̃(k,m)

√
n(0)

n(z)
exp
(

i

∫ z

0
n(k,m, z) dz

)
, (22)

2.6 Important other variables for the study of lee waves

Solving problem (15) and going back into physical space gives the displacement of the streamlines
η(x, y, z). The vertical velocity �eld is obtained using its de�nition w = U∂xη. In the ocean, the move-
ment of �uid being principally horizontal, the vertical velocity can be considered in �rst approximation
as a perturbation, such as w ∼ w′, where the ' denotes the lee wave induced perturbation. The measure
of vertical velocity will thus be the principal way to observe and characterize lee waves in the numerical
model.

To go further, some other variables have to be calculated, in particular, the pressure anomaly p′.
To do so, assuming that the displacement of a streamline creates an anomaly of density and using
hydrostatics, the variation of pressure anomaly in the water column is obtained with:

∂zp
′ = −ηρ0N2. (23)

The pressure anomaly at a given depth is thus

p′(z) = p′(z = 0)−
∫ z

0
dz ηρ0N

2. (24)

Because of the upper radiation condition, p′(z→ +∞)→ 0, the integration of equation (23) between
z = 0 and z = +∞ gives :

p′(z = 0) =
ρ0

4π2

∫∫ +∞

−∞
dkdm h̃(k,m)

ei(kx+my)

i n(k,m)
. (25)
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We compute horizontal velocity anomalies (u′, v′) associated with this pressure anomaly. Assuming
that the mean current U is still along the x-axis, the linearized equations of movement are:

U∂xu′ = −
( 1

ρ0
∂xp′ + (∂zU)w′

)
U∂xv′ = − 1

ρ0
∂yp′

(26)

2.7 Numerical prediction of lee waves

To predict the shape of lee waves in di�erent cases, I implemented a code which allows to compute
the 3D, linear and hydrostatic theoretical prediction of lee wave generation for a given topography and
a given pro�le of mean current U(z) and strati�cation N(z). The shape of the topography and the
pro�les can be analytical like the results presented in Fig. 3 and 4 or arbitrary, like in Fig. 8, 9 and 10
where the topography and the pro�les are from the CROCO simulation that will be discussed later.
In each case, the mean current is along the x-axis, and U and N are independent of the horizontal
position.

The code computes the Fourier transform of η from equation (22). To avoid problems at the edge
of the domain, a Han window is applied on the topography before the calculation of h̃(k,m). The
physical �eld is obtained by going back into physical space.

Figure 4: Lee wave hydrostatic solution computed numerically from equation (18) with U = 1 ms−1

and N = 1.102 s−1. (a) Vertical velocity from calculation in the (x, z) plane (side view), solid lines are
the streamlines η. The bold line represents the shape of the bathymetry h(x, y) used in the calculation.
The dashed gray line denotes the position of the horizontal section presented on the (b) panel. (b)
Vertical velocity at z = 200 m. The dashed blue line denotes the position of the section presented on
the (a) panel. Grey contour in (b) indicates the bathymetry level at 10 m from the ground (i.e the
position of the seamount).

A typical example of lee wave generation is when the mean current encounters an isolated seamount.
The prediction of such an event is presented in Fig. 4. The result is quite similar in the (x,z) plane than
the one for a cosinus topography (Fig. 3) with much less amplitude for vertical velocity. The numerical
calculation allows us to represent such a solution while it can not be calculated analytically. Especially,
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the production of vertical motion at the bottom can be understood easily with this example: when �uid
particles are pushed toward the seamount by the mean current (between x ∼ 4 km and x ∼ 5 km) they
climb over it and a positive vertical velocity is created which radiates upward. The same mechanism
creates a negative vertical velocity behind the seamount (from x ∼ 5 km to x ∼ 6 km).

Finally, the 3 dimensionality of the calculation allows to predict the shape of the wave in the (x,y)
plane. This prediction is important because large scale observations (especially satellite observations)
of waves are made at the surface. Therefore it is the horizontal shape of waves which has to be
characterized.

2.8 Rigid lid condition

The description of lee wave made previously is heavily dependent on the upper radiation condition
imposed (12). In some cases a rigid lid condition is more adapted to the description of lee waves such
that: {

w = 0 at the top (a)

w = U(z = 0) ∂xh(x, y) at the bottom (b)
(27)

It is all the more important when the vertical wavelength (imposed by the topography and the mean
current) matches with the layer thickness. In such cases, a vertical modal structure of the wave is
generated by re�ection at the top. The theoretical and numerical resolution of the rigid lid problem is
not as straightforward as the radiation problem. For non-varying U and N, the form of η is:

η(x, y, z) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
h̃(k,m)

(
M e−i nz + (1−M) ei nz

)
ei(kx+my)dkdm, (28)

with

M =
ei nD

2i sin(nD)
.

where D is the depth of the �uid. The presence of M thus allows the propagation of lee waves only
when the modes interfere constructively. However, the denominator causes the integral to diverge for
n = j πD where j is an integer. The computation can be done by considering the Cauchy theorem for
complex analysis.

An attempt of resolution has been done to add this condition in the theoretical code, but at this
stage of the study, we are only able to predict the comportment of lee wave in the upper radiation
condition.

In the following of this report, I present the di�erent diagnostics and methods I implemented to
observe the phenomenon of lee waves in the path of the Gulf Stream.

3 The simulation

In order to study the generation of lee waves in the Gulf Stream, a realistic simulation in the Gulf Stream
region (around the Charleston Bump) is realized with the Coastal and Regional Ocean COmmunity
model (CROCO; previously called ROMS [17]). This model is widely used in the physical oceanography
community. It solves the hydrostatic primitive equations (1) for the velocity u, the temperature T
and the salinity S, using a full equation of state for seawater [18]. Because the study focuses on very
�ne scales, a nesting approach is used. A parent simulation with coarser resolution is used to force the
edges of a higher resolution simulation. The parent thus supplies the initial and boundary conditions
for the nest. The successive horizontal grid resolutions are ∆x ∼ 750 m for the parent, and ∆x ∼ 300 m
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for the nested domain. The two domains are presented in Fig. 1. The simulation has 128 σ-levels (i.e.
128 vertical levels). This type of vertical discretisation allows levels to follow the topography, and thus
avoids problems of advection and gradients at the bottom boundaries. The nested domain is chosen
to be along the continental shelf, and it is centered around the Charleston Bump (see Fig. 1). The
lateral edges of the domain are chosen far enough from the temperature front of the Gulf stream (i.e.
the area of maximum velocity) in order to avoid advection problems at the edges of the domain.

The bathymetry is constructed from the SRTM30_PLUS dataset. A gaussian smoothing kernel
is used to avoid aliasing due to scales smaller than the resolution scale of the model. Simulations
are forced with a monthly varying wind, and no tides were added. This three choices are important
because they imply weak generation for some types of internal waves: no internal tides and a very few
near-inertial waves.

The subject of the stage was not the construction of the model con�guration, and a very little
amount of time was used on numerical aspects. This allowed me to focus on physics questions. To fur-
ther understand the parent simulation, and numerical aspect, see [8]. In the following "the simulation"
refers to the simulation in the nested domain.

3.1 Simulation outputs

The simulations takes place in spring, and is about one month long from March
20th 2016 to April 12th 2016 with an output every hour. Troughout the simulation,
the Gulf Stream �ows into the domain through the southern boundary, follows
the continental shelf, and �ows out the domain through the northern boundary.
Snapshots of surface velocity are presented in Fig. 5. The horizontal velocity
is important, up to 2 m s−1. While it �ows above the Charleston Bump, the Gulf Stream direction
de�ects and creates a quasi-stationary cyclonic eddy refereed to as the Charleston Gyre [12]. Surface
relative vorticity is presented in Fig. 5. It highlights the cyclonic structure above the Charleston Bump
through positive vorticity patches.

The Eastern boundary of the simulation presents a large amount of submesoscale structures (i.e.
of size < 30 km, the Rossby deformation radius). Spring is a season favorable to the presence of such
structures [3] because of the presence of a deep winter mixed layer at the surface of the ocean.

To allow the reader to visualize the movement of the �uid in the simulation, a video is available
online at this url4, or by scanning the QR code supplied here.

4https://www.youtube.com/watch?v=rBI3Tv5YXf0&feature=youtu.be
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Figure 5: Snapshots of surface relative vorticity normalized by the Coriolis frequency at di�erent times
of the simulation. Gray contours represents the shape of local bathymetry (bathymetry levels at 200,
400 and 600 m), black arrows present the surface velocity �eld.

Section 2 put forth the proposition that when a mean current �ows above a topography, it generates
stationary waves propagating upward. In the simulation presented here, the powerful Gulf stream
�ows at O(1) m s−1 above the Charleston Bump. This topography is rough and the �uid layer above is
O(500) m depth, which is quite shallow compared to the 4000 m mean depth of the global ocean. The
condition are thus in place to allow the forcing and the propagation of internal lee waves.

3.2 Comparison with satellite observations

In this region, such waves have already been observed with SAR (Synthetic Aperture Radar) images
taken by satellites passing over the Gulf Stream [24]. Another way to observe internal waves with
satellite is by measuring the sun glint on the ocean surface with optical spectroradiometers. Fig. 6(a)
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presents an image obtained on April 1st 2010 from radiance measured by the Moderate Resolution
Imaging Spectroradiometer (MODIS) onboard the Terra satellite. The data has been high-passed
at 25 km and has a resolution of 250 m. It shows the ocean surface roughness in the region of the
Charleston Bump. Because divergent currents exhibit surface roughness signature [16], this kind of data
provide observations of oceanic phenomena at scales O(1− 10) km such as internal waves. Wavefront-
like structures in the roughness observation (Fig. 6(a)) thus allow to qualitatively conclude on the
presence of internal waves generated over the Charleston Bump in the path of the Gulf Stream.

Figure 6: (a) Surface roughness from radiance measured with MODIS instrument onboard Aqua satel-
lite on April 1st 2010, black solid contours are bathymetry levels for 200, 400 and 600m. (b) Snapshot
of (∂x + ∂y)(u + v) at the surface, from the CROCO simulation. (c) Snapshot of vertical velocity w
at 100m depth, from the CROCO simulation. (d) Snapshot of lowpass �ltered (Tcut = 4 days) vertical
velocity w at 100m depth, from the CROCO simulation ; yellow, orange and red lines denotes the
location of sections discussed further. (b), (c) and (d) are taken at the same instant, on April 5st 2016

To compare these observations with the simulation, the term(
∂x + ∂y

)(
u + v

)
at the surface is shown in Fig. 6(b). Indeed, it has been proposed that surface roughness can be
interpreted as a linear combination of the horizontal partial derivatives of horizontal velocities [16]
such as

roughness ∼ α∂xu + β∂yu + γ∂xv + δ∂yv.

The coe�cients α, β, γ and δ are functions of (1) the wind direction and (2) the position of the
measuring device with respect to the position of the sun. Setting this coe�cients to 1 allows to have a
�rst assumption of what could be the surface roughness in the simulation. Mesoscale and submesoscale
turbulence within the simulation are very present in Fig. 6(b), notably because of shearing and
divergent processes. Despite this, wavefront-like structures can be seen near 31.5◦ N,79◦ W (on the
Charleston Bump) or near 30.5◦ N,79.5◦ W. Therefore, qualitatively, the same kind of internal waves
that the ones observed by satellite appear in the simulation.

Conceptually, the easier way to understand the generation of internal (in particular lee) waves is
to compute the vertical velocity within the �uid. We have seen that a seamount in the wake of a mean
current create lee waves with horizontal patterns depending on di�erent parameters (see Fig. 4(b)).
The vertical velocity of the �uid at 100 m depth is shown on Fig. 6(c), at the same location and date
that Fig. 6(b). The vertical velocity highlights the wavefront-like structures near the Charleston Bump
discussed above. It also shows that these patterns are not only present at the surface but also below the
thermocline (which is about O(50) m depth). A low-pass butterworth �lter is applied on the simulation
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outputs in order to extract quasi-stationary process within the simulation. The result is shown in Fig.
6(d). The cutting period has been chosen at 4 days to keep the variations of the current(O(1) week),
and to remove all O(< 1) days processes. The low-passed �eld allows us to remove the rapidly-moving
turbulent component of the velocity �eld. It highlights the fact that the wavefront-like structures
observed near the Charleston Bump are quasi-stationary.

At this step of the study, quasi-stationary wave-like structures are seen in the simulation and seem
to be in accordance with satellite observations of internal lee waves. The following part of this report
aims at characterizing them and comparing them to the theoretical solutions of linear lee waves.

4 Lee waves in the gulf stream

4.1 Global evolution of lee waves and �ltering process

Figure 7: (k, ω) power spectrum of vertical velocity at 100 m depth computed in the location presented
on the top right panel. The white dashed rectangle highlights the temporal and spatial scales of the
lee waves.

In the simulation, the Gulf Stream is quasi-stationary, and �ows over a rough topography (including the
Charleston Bump) as illustrated in Fig. 5. The variability of the Gulf stream is at a time scale of O(1)
week. Because of the smoothing of the topography, typical size of seamounts is O(1− 10) km. This
situation is compatible with the generation of quasi-stationnary lee waves of horizontal wavelength
O(1− 10) km. A (k, ω) spectrum (dispersion diagram) of vertical velocity variance at 100 m depth
(w100(t, x, y)) is calculated to visualize the temporal and spatial scales of processes (Fig. 7). This
spectrum is computed over a squared area over the bump (see top right panel of Fig. 7).
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To compute the spectrum, the spatial 2D Fast Fourier Transform (FFT) of w100(t, x, y) is calcu-
lated, which gives a real and an imaginary part ŵr(t, k, l) and ŵi(t, k, l) where k and l are the horizontal
wave numbers for axis x and y. The temporal 1D FFT of ŵr(t, k, l) and ŵi(t, k, l) is then calculated. It
gives two complex �elds w̃r(ω, k, l) and w̃i(ω, k, l). To obtain the power spectral density, this quantities
are recombined such as:

Pw
−100m(ω, k, l) =

∣∣∣∣∣14(w̃r w̃r + w̃i w̃i
)

+
1

8

(
R(w̃i) I(w̃r)−R(w̃r) I(w̃i)

)∣∣∣∣∣
where a is the complex conjugate of a, and R and I are the complex and imaginary parts. Finally an
azimuthal average is computed in the (k, l) space to keep only the norm of the spatial wavenumber.

An energetic region in the (k, ω) space is present for spatial scales of O(10) km and temporal scales
of O(> 1) weeks (dashed white rectangle in Fig. 7) which are the expected scales for lee waves. As seen
in (9), internal waves can only propagate if |f|/|U| < k < |N|/|U|. This value here clearly limits the
energetic region discussed earlier. This con�rms that lee waves are visible in the energetic spectrum
of vertical velocity. Here the value of |f|/|U| is calculated with a spatial average of the velocity at the
bottom on April 5st 2016 (which is a day of important lee wave generations). Therefore, lee waves
seem to be a preponderant process occurring over the Charleston Bump.

The spectrum also highlights the fact that lee waves have a temporal scale lower than 4 days and
it con�rms the accuracy of the low-pass �lter used (presented in Fig. 6). In the following, most of the
quantities showed are low-passed to isolate the lee wave signature.

4.2 Comparison with 3D linear theory

The theoretical code presented in section 2.7 is used to compare lee wave in the simulation with theory
discussed in section 2.

Section 1 in Fig. 6 is an area where some isolated lee waves occur on April 5st 2016 above a
relatively simple topography. This region is deeper than the Charleston Bump area, it allows to make
the assumption of radiation condition (used in the theoretical code). Section 1 has been chosen to
be mostly tangential to the mean current. A region of quasi-constant direction of the mean current
is then chosen around the section. Mean vertical pro�le of velocity and strati�cation in the region
are computed from simulation outputs (at a chosen time). They are smoothed by a Gaussian �lter
to avoid dicontinuities and problems in the calculation of Uzz(z). The topography is de-trended by
removing a smoothed topography to keep only anomalies of topography (i.e. the seamounts). A Han
window is applied on the de-trended topography. The theoretical prediction is presented in Fig. 8. It
shows a horizontal cut of vertical velocity at 500 m depth. The comparison is made in Fig. 8 with an
horizontal cut at 500 m depth of low-passed vertical velocity from the simulation in the region where
pro�les and topography have been extracted.

The signal of vertical velocity in the simulation at the edges of the domain is not consistent with
what is calculated in the theoretical prediction. This is due (1) to the windowing which reduces
intensity of the waves in the theoretical calculation and (2) to the impact of lee wave propagating from
outside the domain (in the simulation). Despite this, the seamount at (x, y) ∼ (5, 6) km generates a
wave of shape and intensity very similar to the theoretical predictions. This kind of internal wave
produces vertical velocity of O(1) cm s−1. It is quite intense in comparison with the -mostly horizontal-
motions occurring in the ocean, and having vertical velocities of O(1) m days−1.
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Figure 8: Vertical velocity at 500 m depth (horizontal cut) using 3D hydrostatic linear theory in the
WKBJ approximation (left), and snapshot of time low-passed vertical velocity at the same depth from
the CROCO simulation (right). The theoretical computation is processed with z-varying U and N
pro�les from the simulation (pro�les are presented on Fig. 9), and with the topography of the domain
considered. The orange dashed line is the location of section presented in Fig. 9, which is location 1
in Fig. 6

Figure 9: Vertical velocity at section 1 (indicated by the orange dashed line in Fig. 8 and Fig. 6), using
3D hydrostatic linear theory in the WKBJ approximation with radiation condition at the top (left),
and snapshot of time low-passed vertical velocity at the same position from the CROCO simulation
(right). Arrows indicate the velocity pro�le used for the calculation (left) and averaged over the section
(right), inserts present pro�les of strati�cation N. The topography is indicated by the bold line.

Vertical sections of vertical velocities for the theory and the simulation are shown in Fig. 9. The
location of the section is indicated in Fig. 6 (section 1) and Fig. 9 (orange dashed line). These sections
focus on the vertical structure of lee waves generated by the seamount at (x, y) ∼ (5, 6) km in Fig. 8.

The global shape of the generated wave in the simulation matches with the theoretical prediction.
In particular the ray inclination are the same. However, the patterns at the top of the domain are
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clearly di�erent. The generation of waves in the simulation seems to be very impacted by the rigid
lid condition which is imposed by the surface of the �uid. As seen in part 2.8 rigid lid condition
imposes the creation of vertical modes. From the surface to 400 m depth this modal structure is
visible. Despite this, the bottom of the domain shows good agreement with the "radiating" linear
solution. This distinction may be due to the fact that the energy which propagates downward after
being re�ected at the surface is dissipated in the interior. This dissipation thus inhibits the creation of a
modal structure within the whole �uid column and the bottom presents the characteristics of radiative
waves without rigid lid. In conclusion, lee waves observed in the simulation are thus qualitatively in
accordance with the "radiating" linear theory near the bottom.

To quantitatively compare the simulation with the linear theory, the bottom values of di�erent �elds
are shown in Fig. 10. As seen before, the intensity and shape of the vertical velocity matches with
the theory. It shows the tendency of particles advected by the current to "climb" over the seamount
upstream, and to go down the seamount downstream.

The lee waves-induced pressure is calculated from the simulation outputs. Firstly the density is
computed from the salinity S and the temperature T with the TEOS-10 equation of state. A spatial
high-pass �lter is then applied on the time low-passed density. The �lter is applied horizontally in the
direction of the section at a cutting length λcut = 10 km. This �lter removes the density background
which varies both horizontally and vertically and extracts an anomaly of density ρ′. Because the �lter is
applied on the time low-passed �eld, and λcut being chosen with respect to the along-section variations
of topography, ρ′ may be considered as the density anomaly due to lee waves. The CROCO model
solving the hydrostatic primitive equations, the pressure anomaly is computed with

p′(z) = −
∫ 0

z
dz ρ′g. (29)

z=0 is the surface of the ocean where the pressure anomaly is known and equal to zero. The result
of this calculation shown on Fig. 10 agrees with the theoretical prediction with a positive pressure
anomaly upstream and a negative one downstream. Linear theory predicts that the pressure anomaly
intensity depends on the cross-section elongation of the seamount [1]. The accordance between the
simulation calculation and the theory is due to the fact that the theoretical code computes 3D theory
instead of the classic 2D theory of textbooks.

This kind of internal wave extracts energy from the mean �ow. In order to quantify it, the energetic
balance of internal waves may be written as [1]:

U∂x

( (A)︷ ︸︸ ︷
1

2
ρ0|u'|2 +

(B)︷ ︸︸ ︷
1

2

g2ρ′2

ρ0N2

)
+ ∇(

(C)︷︸︸︷
p′u') = −ρ0Uz u′w′ (30)

where the part (A) is the kinetic energy density perturbation, the part (B) is the potential energy
density perturbation and the part (C) is the energy �ux perturbation in 3 dimensions. Considering a
weak mean shear (i.e Uz ∼ 0), the wave energy is conserved, and the vertical energy �ux generated by
linear lee waves is thus Fez = p′w′. Because the troughs and crest of the perturbation pressure coincide
with the vertical velocity, the vertical energy �ux is found positive on the ground, as predicted by linear
theory. It means that lee waves propagate energy upward.

Such energy �ux has already been measured by EM-APEX pro�ling �oats in the Drake passage [4].
The authors observed a large lee wave generated by the Antarctic Circumpolar Current (ACC) over a
ridge about 1.5 km tall. They found a vertical energy �ux of O(1) W.m−2. The ACC horizontal velocity
at 100 m depth in the region is about 0.5 m s−1 while the Gulf Stream �ows at about 1− 1.5 m s−1.
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The Drake passage ridge being 30 times taller that the seamount studied in Fig. 10, and the velocity 3
times lower, a factor 10 can be assumed between the Drake passage case and the seamount case of the
CROCO simulation. The peak value of Fez = O(0.1 )W m−2 in the simulation is thus in accordance
with the Drake passage observations.

Figure 10: Comparison of the vertical velocity w at bottom (top), pressure anomaly p′ at bottom
(middle top), vertical energy �ux Fz

e at bottom (middle bottom) and bathymetry h (bottom) between
3D hydrosatic theory (red dashed line) and CROCO simulation (black solid line).

4.3 Diagnostics over the bump

The lee waves generation agreeing with linear theory (at least at the bottom), this section focuses on
analyzing what is happening over our main region of interest: the Charleston Bump. To do so, an
along-�ow section is chosen over the bump, called section 2 in Fig. 6, where a clear pattern of lee wave
generation is seen in the horizontal cut of vertical velocity (Fig. 6). A snapshot of vertical velocity
along this section is shown in Fig. 11(a).

The region over the bump has the characteristic of being very shallow (O(500) m) with a rough
topography over which the Gulf Stream �ows intensely. The section shows that these conditions
generate a signi�cant amount of lee waves, which can be seen over each seamount. In contrast with the
case studied in the previous section, the vertical structure of the waves here is clearly modal because
of the thickness of the �uid layer which is very close to 2πU/N, the theoretical vertical wavelength of
hydrostatic lee waves.

Contours of constant density (isopycnals) are also shown on Fig. 11. It shows that where the
vertical velocity is positive (resp. negative), the horizontal along-current gradient is mostly positive
(resp. negative). Because the density distribution and the vertical velocity are very correlated, lee
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waves seems to generate an important vertical advection of �uid particles throughout the whole �uid
layer. The height of the surface mixed layer hSML is also computed. To do so, a typical variation of
density δρ is chosen, and we de�ne

hSML =
∣∣∣z(ρsurf)− z

(
ρ = ρsurf + δρ

)∣∣∣ (31)

where ρsurf is the density at the surface and δρ = 50 g m−3 (�xed arbitrarily). It isolates the layer
where the density is quasi-homogeneous. The result shows a variation of the surface mixed layer
clearly corelated with the variations of bathymetry. It indicates that the depth of the pycnocline is
impacted by the lee waves generated on the ground. This conclusion may be important because the
pycnocline is a place where a lot of biological process occur. Notably, it has been suggested that the
variations in the vertical structure of the ocean (i.e. pycnocline and thermocline) could be one of the
more important causes of variation in regional plankton diversity [10]. Internal waves such as lee waves
therefore appear as an important mechanism in the evolution of biological processes.

Similarly, the height of the bottom mixed layer is computed using

hBML =
∣∣∣z(ρbot − δρ)− z

(
ρbot

)∣∣∣ (32)

where ρbot is the density at the bottom. The result shows that this layer is about as large as the
surface mixed layer. It also highlight the impact of lee waves on the shape of the bottom mixed layer,
similarly than for the surface one.

Figure 11: (a) Snapshot of time low-passed vertical velocity at location 2 (Fig. 6), gray contours
indicate the isopycnals, arrows indicate the velocity pro�le (tangential to the section). (b),(c),(d)
along-section averaged pro�le of strati�cation N2, lee waves Froude Number NH/U and radiation
parameter U/NL with max and min delimited area shaded in grey. In (b) the red area indicates the
values of NH/U for which lee waves are predicted to be non-linear. In (c) the red area indicates the
values of U/NL for which waves can not propagate (the left red dashed line indicates the pro�le of
Prandtl number f/N).

The Brunt-Väisälä frequency N is computed from the density (eq. (4)). It is averaged horizontally
along the section. The result shows a maximum indicating the mean depth of the pycnocline at about
150 m (Fig. 11(b)).
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To characterize the lee wave process, a lee-wave Froude number is calculated. The Froude number
is a dimensionless number generally de�ned as the ratio of the advection by the �ow to the wave
propagation. In the case of lee waves, [11] shows by non-dimensionalizing the strati�ed Euler equations,
that the correct Froude number is NH/U, where N and U are scales for the background strati�cation
and velocity, and H is the scale of the bathymetry height. The authors thus show that this ratio
corresponds to:

Frlee =
NH

U
=

vertical velocity within the lee wave

group velocity of the lee wave
. (33)

[14] also discussed this parameter by calling it a "steepness" parameter. In these two papers, authors
agree by stating that:

Frlee < 1→ linear propagation of the waves

Frlee & 1→ non− linearity of the waves.
(34)

In the simulation we compute typical height scale of the bathymetry H using a peak detection
algorithm. Each seamount is de�ned by a local maximum and two minima (upstream and downstream).
The di�erence between the maximum and the minimum is computed both upstream and downstream.
Averaging the two quantities gives a mean height for each seamount. In the case of this section, one
assumes that all seamounts have about the same height. Averaging the heigth of all seamounts gives
here H = 37 m. Frlee is then computed locally in the whole section and averaged along the section. It
gives the lee-waves Froude number pro�le shown in Fig. 11(c). It highlights the fact that lee waves
have a linear behavior.

In the case of lee waves, the condition for hydrostatic �ow de�ned in (8) can be re-written in terms
of an adimensionned number ε such that:

ε =
U

NL
� 1→ Hydrostatic (35)

where L is the typical scale for the length of seamounts (see Fig. 2). Using the same peak detection
that before, L is de�ned as the distance between the lows of the bathymetry. Furthermore, relation
(9) can be re-written in terms of ε such as :

Prdtl < ε < 1 (36)

where Prdtl = f/N is the Prandtl number. As for the lee-wave Froude number, ε is computed locally
and averaged along the section. The resulting pro�le is shown in Fig. 11(d). It shows that in the
interior (1) the radiation condition is respected and (2) the hydrostatic condition is satis�ed. This
justi�es the using a hydrostatic model for this study.

In conclusion, over the Charleston bump, linear lee waves are generated by little topographic
seamounts of only O(< 50) m tall. Such waves can then propagate in the �uid column upward to
the surface mixed layer and impact the pycnocline depth. The small roughness of the ground induces
large vertical velocities of O(1) cm s−1 which may have a signi�cant impact on vertical-motion-induced
processes such as mixing. Furthermore the dynamic at the bottom seems to be more complex that
just the lee wave process, and need further investigations. The study of such processes is the subject
of the next section.

21



Lee waves in the Gulf Stream Charly de Marez

5 Dissipation, mixing and non-linear processes

5.1 Bottom mixed-layer depth from in-situ data

In the previous section, we have seen that the bottom mixed layer can be as thick as the surface mixed
layer in some extreme region (like the Charleston Bump). Studies using in-situ data have already
shown that the bottom mixed layer could be O(100) m thick over the Charleston Bump [20].

In order to compare this study with the simulation outputs, gliders data used in [20] have been
uploaded from [21]. This data provide high-resolution transects across the Gulf Stream along the
U.S. East Coast including some over our simulation domain (see trajectories on Fig. 12(b)). An
example of such transects is shown in appendix C. Gliders were equipped with pumped Sea-Bird 41CP
conductivity-temperature-depth (CTD) instrument. They thus provide pro�les of temperature and
salinity at a given horizontal position. For each pro�le, the thickness of the bottom is computed
with (32). Gliders diving at maximum 1000 m depth, if the maximum depth of each pro�le did not
correspond with the bathymetry at this position, the pro�le were removed (using bathymetry from
the CROCO simulation). An average of the height of the bottom mixed layer is then computed in
0.5◦ × 0.5◦ boxes within the simulation domain (Fig. 12(a)). This average is in time and space because
gliders data haven't been collected at the same time and at the same location. The results shows a
bottom mixed layer of O(100) m over the region of the bump, and along the continental shelf. The
computation of the standard deviation in the same boxes (Fig. 12(b)) gives an estimation of the
variation of the bottom layer in time and in space. This variation is very important over the bump.
This is due to the fact that (1) this region presents a time variation of the current when the Charleston
Gyre moves Northward and Southward along the shelf and (2) the bottom current is maximum in this
region. This intensi�cation may generate a lot of non-stationary or/and non-linear processes which are
probable causes of the bottom mixed layer expansion.

Figure 12: Bottom mixed layer thickness calculation in 0.5◦ × 0.5◦ boxes. (a) Mean thickness from
gliders data. (b) Standard deviation of thickness from gliders data, grey dots indicate the trajectories
of gliders. (c) Mean thickness from simulation. (d) Standard deviation of thickness from simulation.
On each map, gray contours indicate bathymetry levels between 0 and 800 m every 100 m.

The mean height of the bottom mixed layer and its (time and spatial) standard deviation are
also computed from the simulation (Fig. 12(c) and Fig. 12(d)). The results shows also a quite thick
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bottom mixed layer of O(100− 150) m over the bump and along the shelf. Despite the fact that the
height is more important in the simulation, the regions where the bottom layer is thick are quite the
same that in gliders observations. Furthermore, a net correlation can be made between the standard
deviation from simulation and from observation: there is a lot of variation along the shelf and over
the bump. In this regions, the important thickness of the bottom mixed-layer may be due to vertical
mixing (through non-linear processes) and some energy dissipation may occur in this region.

5.2 Quanti�cation of the dissipation and energy budget

Figure 13: Energy dissipation due to vertical mixing. (a), (b) and (c) Energy dissipation from vertical
mixing at the bottom, in the interior and at the surface. (d), (e) and (f) Focus on the area delimited
by the grey rectangle in (b). (d) Dissipation in the interior. (e) Vertical energy �ux of lee waves Fez at
the bottom. (f) Lee-wave Froude number. All quantities are time-averaged overt the whole simulation.
The contours indicate bathymetry levels between 0 and 800 m every 200 m. The grey-shaded areas
represent regions where either the energy dissipation is positive or the whole �uid column is mixed (i.e.
no surface or bottom mixed layer can be de�ned).

To quantify the impact of lee waves and nonlinearities, the kinetic energy budget is analyzed. The
kinetic energy equation can be calculated by taking the inner product of the horizontal velocity with
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the Navier-Stokes equations. It gives:

1

2
∂tu

2
i +

1

2
u∂xu2

i +
1

2
v∂yu2

i +
1

2
w∂zu

2
i = − ui

ρ0
∂xiP + Vui +Dui + Sui (37)

for the two components of the velocity (i.e i = 1, 2), where V is the vertical mixing (V = ∂z(K∂zu)), D
is the horizontal di�usion, and S other sources and sinks. Each term of (37) is computed 'online' by
the model. In the following we focus on the quantity:

Ediss = Vu +Du + Vv +Dv (38)

which represents the vertical mixing and horizontal di�usion part of the energy budget. Because
horizontal di�usion is weak, we assume that Erhs represents the energy dissipated by the vertical
mixing in the simulation. The numerical model has implicit horizontal dissipation through its advection
scheme, and vertical dissipation based on parameterizations of the vertical mixing (for more details see
[8]).

The energy dissipation at the bottom (Fig. 13(a)), and at the surface (Fig. 13(c)) are calculated
by integrating ERHS respectively in the bottom mixed layer and in the surface mixed layer. The energy
dissipation in the interior (Fig. 13(b)) is also computed by integrating ERHS in the layer between the
bottom and the surface layers.

In Fig. 13(a), (b) and (c) the total dissipated energies over the domain are shown in inserts
(calculated by integrating horizontally the energy dissipation). In addition, the time evolution of such
dissipated energies over the bump is shown in appendix D. It shows that the dissipation by vertical
mixing is dominant in the surface layer. The map of surface dissipation also highlights the fact that
this dissipation is important along the shelf, where the Gulf Stream is the strongest.

Despite this, a non-negligible amount of energy is dissipated in the interior. In particular, the map
shows a pattern of dissipation at the eastern edge of the Charleston Bump. This pattern is localized
where intense lee-waves are observed in the simulation (see Fig. 6(c)). A zoom in a region over the
Charleston Bump is shown in �g 13(d). In this speci�c region O(0.5) GW is dissipated in the interior.

To quantify the contribution of lee waves in such dissipation, the vertical energy �ux generated
by lee waves Fez = p′w′ at the bottom is computed. The calculation is made with time low-passed
simulation outputs. To compute the pressure anomaly, a spatial trend of the density is computed with
a cubic smoothing spline with a fall-o� chosen to keep only the small scales contribution. The pressure
is then computed with (23). The result of this calculation in the region over the bump is shown in Fig.
13(e). It highlights an area where a lot of lee waves are generated. This region is the same that the one
where dissipation is observed in the interior. Furthermore, by summing this energy �ux horizontally
gives a �ux of energy O(0.5) GW. This order of magnitude is similar to that of the dissipation in the
interior. It allows us to conclude that the impact of lee wave in the dissipation in this region is non
negligible.

The energy �ux discusses earlier is computed assuming linear lee waves, whereas dissipation occurs
when non-linear process are involved. To discuss of the non-linearity of lee waves in the region, the lee
wave Froude number NH/U is computed. To do so, a peak detection is performed on the de-trended
topography in directions x and y. For the computation over x for instance, the peak detection discussed
in section 4.3 is used for each y-position along the x-axis. It gives a map of the height of the seamounts
in the region. This map is then interpolated on a regular grid. The result in direction x and y are then
averaged giving a map of H. The Froude is �nally calculated by taking a mean value of N and U near
the bottom. Since we have seen earlier that the Froude does not vary vertically (see Fig. 11(c)), this
calculation is representative of the horizontal distribution of the Froude number over the Charleston
bump. The result is shown in Fig. 13(f). It highlights the fact that Frlee is close to the unity at the
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eastern edge of the bump, where we have observed an important energy dissipation in the interior. In
the interior, one of the few process occurring is internal waves such as lee waves. The dissipation in
the interior may thus be due to the vertical mixing induced by the breaking of lee waves becoming
non-linear.
[13] showed that approximately 0.2 TW is converted into lee waves in the global ocean and that about
half of this energy is dissipated. Here one can assume that O(1) GW of energy is dissipated in the
interior because of lee waves in the whole simulation domain. In this region around the Charleston
Bump, the nonlinearities of lee waves in the interior are thus responsible for about 1% of the dissipated
energy by lee waves in the global ocean.

However, the dissipation in the interior is much lower than the dissipation at the bottom. The
bottom dissipation varies a lot during the month of the simulation (see appendix D). Time variations
and horizontal distribution of the bottom current being correlated with intensi�cation of the mean
current, the bottom dissipation is principally driven by the near bottom �ow over the (rough) topog-
raphy. The vertical mixing at the bottom may occur because of plenty of turbulent boundary layer
processes. To understand what is happening at the bottom, the next section focuses on the section 3
indicated in Fig. 6 and Fig. 13(a).

5.3 Focus on local dissipation

The region discussed in this section is interesting because even though it is quite isolated, bottom and
interior energy dissipation are important (Fig. 13(a) and (b)) and some non-linear processes happen
during the simulation. The section is chosen tangential to the mean current. A seamount which forces
the generation of lee waves is present in the middle of the section.

Figure 14: Section illustrating the vertical mixing process. (top) Snapshot of density at location 3 (Fig.
6) on April 5th, black contours indicate the isopycnals, arrows indicates the velocity pro�le (tangential
to the section). (middle) Hydraulic-jump Froude number computed with depth averaged velocity U
and strati�cation N from bottom to zref , for di�erent values of zref . (bottom) Depth integrated (from
bottom to zref = −650 m) dissipation of energy. The dissipation is time-averaged over the "hydraulic
jump episode".
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The time evolution of what is happening at the bottom of the section is presented in appendix E.
At the beginning of the simulation, the near bottom current is weak. The current then increases and
internal waves are generated above the seamount. On April 5th, a so-called 'hydraulic jump episode'
occurs. This event is shown in Fig. 14. The density distribution at the bottom shows a region (at
about (x, z) ∼ (16 km,−700 m)) where the isopycnal ρ = 27.3 kg m−3 looks like a breaking wave. At
this location some heavy water passes over some lighter one and some mixing may occur.

The shape of the streamlines here is very similar to a phenomena often discuss in hydrodynamics
literature: hydraulic jumps. In a strati�ed �ow, the distinction between a breaking lee wave and an
hydraulic jump is not clear. The di�erence is principally semantic. In the case of lee waves one talks
about the breaking of the wave, while in the case of hydraulic jump one talks about the transition
between a subcritical and a supercritical �ow.

To discuss in terms of critical �ows in our case, a 'hydraulic jump Froude number' Fr is computed.
As for the lee wave case, the choice of a correct Froude to describe the �ow is not straightforward. For
a strati�ed �ow in an open canal, the literature (for instance [19]) usually de�nes the Froude such as

Fr =
U

Nh
(39)

where h is the height of the water column (i.e. the total depth). It corresponds to the ratio of the
velocity of the �ow to the velocity of the �rst mode of gravity waves. Depending on the value of this
number, it says that:

Fr < Frc → subcritical flow

Fr & Frc → supercritical flow
(40)

with Frc = 1 is the critical Froude number. If the �ow is supercritical upstream and subcritical down-
stream a speci�c location, a stationary hydraulic jump is formed at this location and some energy
is dissipated by the jump. In the literature, the hydraulic jump is occurring in a layer of height h
where U and N are assumed constant. In the case observed in the simulation, the event is localized
at the bottom of the �uid. h is thus de�ned as the height between the ground and a typical level
zref , describing the 'bottom active layer', where the hydraulic jump is occurring. The velocity of the
�uid and the strati�cation are averaged in this layer, giving depth averaged 〈U〉 and 〈N〉. It gives an
horizontally-varying Froude number describing the hydraulic jump event. The result is shown in Fig.
14 (middle) for di�erent values of zref . Choosing zref = −650 m, gives a good characterization of the
hydraulic jump observed and motivate the choice of such bottom layer. The �ow is supercritical at the
top of the seamount since Fr > 1 and subcritical in the lee of the seamount. (Time evolution of the
Froude number shows that it exceeds 1 only when the jump occurs.)

Hydraulic jumps are the place where energy is dissipated. To quantify this dissipation, the energy
dissipation by vertical mixing Ediss (de�nition (38)) is integrated in the layer used for the computation
of the Froude number (i.e. between zref = −650 m and the ground). This value is also time averaged
over the hydraulic jump episode (about 2 days long). The result is shown in Fig. 14(bottom). It shows
that a signi�cant amount of energy is dissipated above the seamount. The order of magnitude of this
dissipation (O(10−4) W m kg−1) is close to the one observed in some regions over the Charleston Bump
in the bottom mixed layer and at the surface (see Fig. 13). It allows us to conclude that an important
part of the energy dissipated by vertical mixing in the simulation may be due to that kind of hydraulic
jump e�ect.

In conclusion, an important amount of energy is dissipated at the bottom by vertical mixing. This
mixing is mostly due to the shearing and frictional e�ects where the bottom current is strong. Locally
we have seen that this dissipation may be due to the breaking of lee waves (also called hydraulic jump).
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A non-negligible part of the energy is also dissipated by lee waves in the interior of the ocean, where
such waves are subject to nonlinearities and where the vertical energy �ux of lee waves is important.
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6 Conclusion

During this internship, I have studied the generation of internal lee waves in the Gulf Stream path
using both theory and a realistic simulation.

We do observe in our simulation the generation of lee waves that are in qualitative agreement
with previous observations from satellite and sea-gliders observations. Secondly, we highlighted the
fact that in the simulation the shape of the waves agrees with the linear theory at the bottom of the
ocean. Linear theory is able to reproduce the essential properties of observed lee waves, at least as far
as their generation and amplitude are concerned. Furthermore, we have shown that these waves are
essentially in hydrostatic and linear regime according to typical dimensionless numbers (e.g. lee wave
Froude number). We have observed that a signi�cant amount of energy (O(1) GW) is being dissipated
in the interior of the �uid. This dissipation takes place where some energy is radiated upward by lee
waves, and where these waves are subject to nonlinearities. Finnaly, the study of the breaking of lee
wave has shown that such phenomenon creates an important dissipation (O(10−4) W m kg−1) near the
bottom. This order of magnitude is comparable for instance with the dissipation induced by centrifugal
instability [7] in the ocean. This kind of phenomenon have thus to be taken into account in the global
lee-wave dissipation budget.

Through vertical mixing, lee waves provide a mechanism for the transfer of energy from large-
scale �ows to turbulent length scales. In particular over the Charleston Bump, this mechanism is
substantial since it represents approximately 1% of the dissipated predicted by [13] in the whole ocean
by the breaking of lee waves.

To go further, a �nest study of this near-bottom phenomenon could be done, especially by separating
the model-parameterized drag from the breaking of lee waves. This may allow to quantify the lee-
wave-induced dissipation at the bottom. A study of the lee-wave-induced mixing could also be done
by studying the potential energy variations in the interior. Finally, adding a rigid lid condition in the
theoretical calculation could allow to compare the theory with the waves in the simulation where the
layer is shallow.
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A Basic theory for the ocean dynamics

This section aims at presenting some de�nitions which are used in this report. It sets the main equations
that underlie the physical oceanography.

A.1 From momentum equations to primitive equations

Start from Navier-Stokes equations for a �uid of density ρ in a rotating frame of reference :

d

dt
u+ 2Ω× u = −1

ρ
∇P− g.ez + F+D (41)

Projecting the rotation vector of earth over a local frame gives

2Ω× u =

−fv + f∗w
fu
−f∗u

 (42)

where f = 2Ωsinφ and f∗ = 2Ωcosφ are the "traditional" and "non traditional" Coriolis parameters (φ
is the latitude). Far from the equator (where φ ∼ 0) the non-traditional component of the Coriolis
parameter can be neglected. Making this assumption and the Boussinesq approximation, one obtain a
set of equation called Primitive equations :

d

dt
u+ fez × u = − 1

ρ0
∇P− ρ′

ρ0
g.ez + F+D (43)

A.2 Density evolution and Brunt-Väisälä frequency

The distribution of salinity S and temperature T impact the distribution of density in the water column.
An equation describing the evolution of density can be written. Starting from mass conservation

d

dt
ρ+ ρ∇u = 0, (44)

by assuming incompressibility ∇u = 0 and the density decomposition (2) one can write

d

dt
ρ′ + w∂zρ̄ = 0. (45)

Dividing this equation by −g/ρ0, the equation for the evolution of the density is:

− g

ρ0

d

dt
ρ′ + wN2 = 0. (46)

B WKBJ approximation

The solution of (15) can be found using the WKBJ approximation. Physically, we consider the trajec-
tories of wave packets of wave energy for given wave number, where this wavenumber is determined
locally by N and U. This method of resolution is called after Wentzel, Kramers and Brillouin who
developped this method to �nd an approximate solution of the wave equation. This method is notably
used to solve the time-dependent Schrödinger equation. Mathematically, we set that

η̃ = A(εz)ei
θ(εz)
ε + O(ε2).
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with ε� 1. Injecting this form of solution into (15) gives:

n2 = (∂zθ)
2 at O(ε0)

2(∂zA)(∂zθ) + A(∂2z θ) = 0 at O(ε1)

which �nally gives:

θ =

∫ z

0
dz n(z)

A(z) = A(z = 0)

√
n(z = 0)

n(z)

and the form of the displacement of a streamline given by (22).

C Transect from gliders

Figure 15: Density measurement from a glider mission, insert presents the trajectory of the glider
during the mission. Black dashed line presents the position of top of the bottom mixed layer computed
with (32) and black solid line presents the bathymetry from the simulation.
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D Time evolution of dissipation

Figure 16: Time evolution of horizontal summed dissipation over the Charleston Bump (area delimited
by the grey rectangle in �g13(b)). (top) Comparison between the dissipation at the bottom, in the
interior and at the surface. (bottom) Comparison between the dissipation in the interior and the
vertical energy �ux of lee waves.

The time evolution shows a quasi-periodic evolution of the dissipation at the surface whith a period of
∼ 1 day. This periodicity is due to the diurnal variability of the surface mixed layer depth (implemented
by a speci�c function in the model). It highlight the fact that there is much mixing during the night.
Indeed, water at the contact of the atmosphere cools down and sink in the interior. It results in an
intense mixing at the base of the surface layer and an increasing of the height of the surface layer
during the night. The dissipated energy in the surface layer is thus bigger at night.
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E Hydraulic jump event

Figure 17: Hydraulic jump episode. On March 26th the near bottom current is weak and no waves is
generated. On April 3rd the current becomes intense the streamline is deformed as predicted by the
linear theory. On April 5th the wave downstream breaks, the shape of the streamline is typical of an
hydraulic jump episode. On April 8th the current is weak and and wave propagation vanishes
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F Energy conversion into lee waves

Figure 18: Energy conversion into lee waves according to linear theory. (left) Topography anomaly
h′ obtained by de-trending the topography and near-bottom current used for the calculation of the
energy. (middle) Brunt Väisälä frequency N2 used for the calculation of the energy. (right) Energy
�ux converted into lee waves, the insert indicates the energy �ux integrated over the whole domain.
Each �elds is time-averaged overt the simulation. For each map, black contours indicate bathymetry
levels from 0 to 800 m every 200 m.

To compute the energy converted into lee waves with observations, we have to know the value of the
vertical velocity near the bottom of the ocean (see (30)). Compute such �ux within a large area is, in
practice, impossible. To make an estimation of the �ux, an other approach is possible using the linear
theory.
The form drag exerted by the topography on the mean �ow is

F(x, y) = p′(x, y, z = 0)∇h(x, y).

(This drag is equal to the vertical momentum �ux of lee waves [6] such that

F(x, y) = ρ0((u
′w′)2 + (v′w′)2)1/2.)

By passing into Fourier space, and using the fact that the wave drag is linked to the energy �ux through
the wave action, [2] shows that the energy converted into lee waves is:

Elee =
ρ0

4π2

∫∫ +∞

−∞
Ph(k, l)

(U.k)

|k|
√

N2 − (U.k)2
√

(U.k)2 − f2 dk dl (47)

where the velocity U and the strati�cation N have to be estimated at the bottom, and Ph is the power
spectrum of the topography. This expression is valid for small topographies.

[13] and [14] typically use this expression in order to estimate the energy converted into lee waves.
Particularly, [13] shows that 20% of the global wind power input into the ocean is converted into lee
waves (about 0.2 TW).The authors also highlight that in extreme region such as the ACC region, the
energy �ux is O(10− 100)mW m−2.

To compare these results with our simulation, the calculation of the energy �ux is computed using
equation (47). The region of the calculation is the same that the one indicated in Fig. 13 by the grey
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rectangle. The topography is de-trended to compute the power spectrum Ph. The velocity and the
strati�cation are averaged in boxes (6× 6 km) to reduce the calculation time, and averaged in the last
100 to avoid problems in the bottom mixed layer. The calculation is made every 12 hours and then
averaged over the whole simulation.

The topography, mean velocity and mean strati�cation used for the calculation are shown in Fig.
18(left) and (middle). The energy converted into lee waves is shown in Fig. 18(right). It shows a max-
imum energy �ux of 83 mW m−2 where the current is maximal. This value agrees with the estimation
of [13]. Furthermore, the horizontally-integrated value of the energy is 0.33 GW which matches with
the energy presented in Fig. 13(e). This calculation highlights the fact that the Charleston Bump is
as important as extreme region such as the ACC region in terms of lee waves production.
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